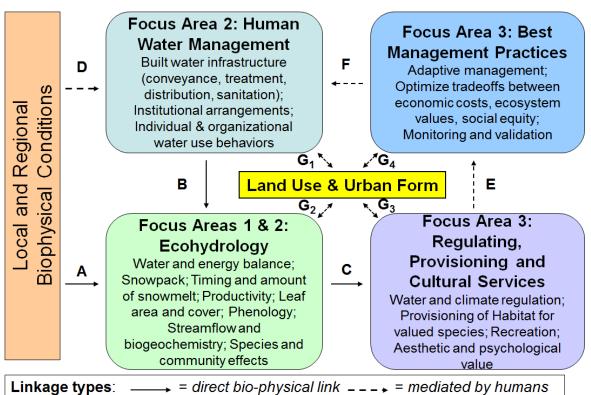


The Coupled Human-Natural System

Research Area Focus 3

Overarching Goals

- Study the water system as a whole, including the linkages between biophysical and social dynamics, using results from Focus Areas 1 and 2
- Facilitate interactions with stakeholders and linkages among disparate datasets and models to improve our capacity to study the complexity of local water issues


Team & Disciplines

- Component Faculty/Researchers: Diane Pataki (UU), Doug Jackson-Smith (USU), Reid Ewing (UU), Sarah Hinners (UU), Jeff Horsburgh (USU), Ryan Jensen (BYU), Chris Nelson (UU), Sara Null (USU), David Rosenberg (USU), Bo Yang (USU)
- **Component Disciplines:** Ecology, sociology, urban planning, hydrology, landscape architecture, engineering, climate science

Goal 1

• Integrate results from Focus Areas 1 and 2 to better understand the water system as a whole

Guiding Socio-Ecohydrology Framework

Goal 1 Objectives & Activities

- Objective 1.1: Identify, categorize, and centralize relevant datasets and models
 - Define and scope the coupled water system
 - Create data inventory
 - Create model inventory

Objective 1.2: Link disparate models and datasets
Link data to models
Improve model coupling

Goal 1 Outputs

- Detailed conceptual framework (manuscript)
- Web-based data inventory and archive
- Documentation of iUtah models with their domains, inputs and outputs, and platforms
- Enhanced capability of existing models to utilize new datasets
- Coupling of existing models that represent different aspects of the water system (e.g., climate, hydrologic, and agent-based models)

Goal 2

• Goal 2: Enhance capacity for interdisciplinary research and training

Goal 2 Objectives and Activities

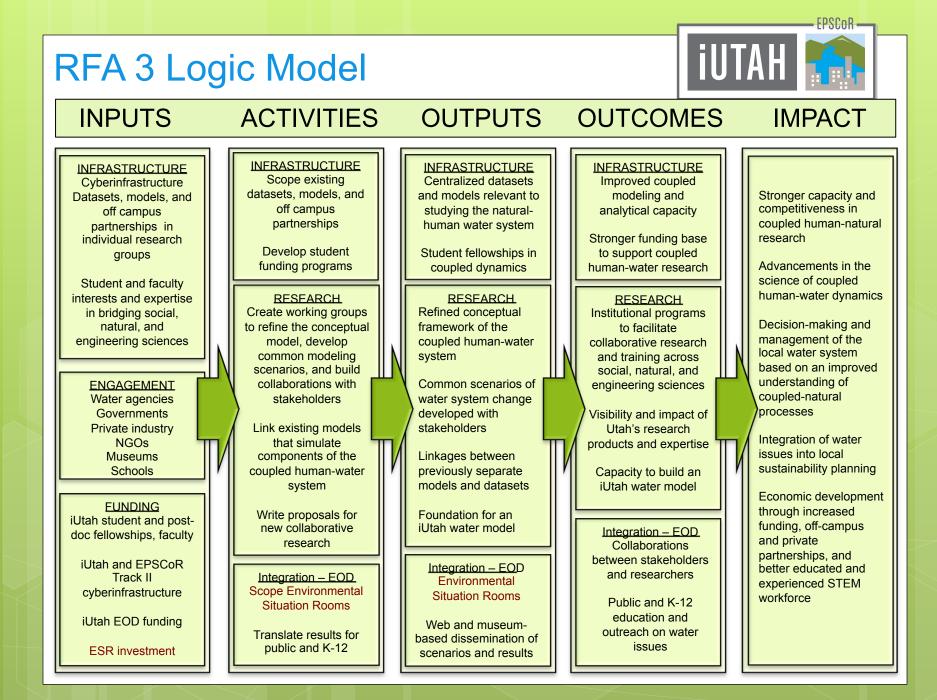
- Objective 2.1: Link researchers, teachers, students, and stakeholders interested in water sustainability
 - Build collaborative relationships across campuses
 - Scenario scoping
 - Evaluate water system change
- Objective 2.2 :Enhance data/model visualization capacity
 - Scope and build the Environment Situation Rooms

Goal 2 Outputs

Meetings, workshops, and teleconferences
Interdisciplinary working group to establish common scenarios

Modeled scenarios of water system change

 Environment Situation Rooms constructed at UU and USU


Possible Challenges

- The campus and disciplinary silo problem
- Relevant datasets are held by different agencies with varying degrees of public access
- Disparate model inputs, outputs, spatiotemporal domains, and platforms
- Need for more interdisciplinary training programs (IGERTs are pending)
- Lack of funding for personnel

Anticipated Outcomes or Impacts

- Short-term: Increased communication and collaboration across disciplines and campuses
- Mid-term: Identified and centralized datasets and models relevant to studying the naturalhuman water system
- Long-term: Improved understanding of the complex, coupled human-natural water system

