

Frank Black
Westminster College

Acknowledgements: Westminster Undergraduates

Josh Schmidt Chris Mansfield

The various forms of Hg differ in their cycling and toxicity

Elemental mercury - Hg(0)

Inorganic mercury - Hg(II)

Monomethylmercury - MMHg

Dimethylmercury - DMHg

Methylation and biomagnification of mercury

Fish consumptions advisories nationwide

In 2010: 4,598 fish consumption advisories issued, 81% due to Hg. Covers 42% of US lake acreage, 36% of river miles, 42% of coastal waters.

But most of the Great Salt Lake is hypersaline and doesn't have fish

Pathways for Hg exposure from the GSL

Fun facts about mercury at the Great Salt Lake (GSL)

- Highest concentrations of MMHg ever measured in natural waters were in the Deep Brine Layer of the GSL (Naftz et al., 2008; Johnston et al., 2015)
- Highest concentrations of MMHg ever measured in oxic natural waters were in surface waters of the GSL (Black et al., unpublished data; Johnston et al., 2015)
- GLS has the only duck consumption advisory for Hg in the world

Do slow rates of MMHg photo-degradation at high salinities contribute to elevated MMHg concentrations in the GSL?

Do slow rates of MMHg photo-degradation at high salinities contribute to elevated MMHg concentrations in the GSL?

Fast photo-degradation of MMHg-thiol complexes

Slow photo-degradation of MMHg-chloride complex

GSL surrounded by ~400,000 acres of wetlands

(U.S. EPA. 2010)

Wetlands are hotspots of mercury methylation

(Babiarz et al., 1998; Hurley et al., 1998; St. Louis et al., 1996; Marvin-DiPasquale et al., 2003)

MMHg photo-degradation experiments

- 250 mL of 0.45 μm filtered surface water spiked with 2 ng/L MMHg.
- 250 mL Teflon bottles in water baths exposed to sunlight for 10 hours (101.4 mol/m² PAR) during clear summer day.
- Salinity and chloride concentrations varied by addition of NaCl and sea salts.
- Light treatments and dark controls (Al foil wrapped) performed in triplicate.

Measuring MMHg at < 1 part per trillion (< 5 pM) concentrations is laborious

and OCEANOGRAPHY: METHODS

 ${\it Limnol. Oceanogr.: Methods \ 13, \ 2015, \ 81-91} \\ © 2015 Association for the Sciences of Limnology and Oceanography doi: <math>10.1002/lom3.10009$

Quantification of monomethylmercury in natural waters by direct ethylation: Interference characterization and method optimization

Christopher R. Mansfield and Frank J. Black*

Department of Chemistry, Westminster College, Salt Lake City, Utah

Degradation of MMHg was photo-chemical

Rates of MMHg photo-degradation are not low in GSL surface waters

Rate constants from previous studies (mol⁻¹ m²):

Seawater = 3×10^{-3}

Coastal wetlands: 9×10^{-3}

Freshwater lakes = $3-10 \times 10^{-3}$

(Lehnherr and St. Louis, 2009; Hammerschmidt and Fitzgerald, 2009; Black et al., 2012)

Ongoing work

- Test if MMHg is simultaneously photo-degraded by multiple reaction mechanisms, which vary as a function of light wavelength.
 - Direct vs. Indirect mechanisms (singlet oxygen, hydroxyl radicals, photo-Fenton reaction, triplet state DOM)
- Reevaluate effect of chloride and other water chemistry parameters on MMHg photo-degradation.